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RNA–protein interactions are crucial for such key biological pro-
cesses as regulation of transcription, splicing, translation, and
gene silencing, among many others. Knowing where an RNA mol-
ecule interacts with a target protein and/or engineering an RNA
molecule to specifically bind to a protein could allow for rational
interference with these cellular processes and the design of novel
therapies. Here we present a robust RNA–protein fragment pair-
based method, termed RnaX, to predict RNA-binding sites. This
methodology, which is integrated into the ModelX tool suite
(http://modelx.crg.es), takes advantage of the structural information
present in all released RNA–protein complexes. This information is
used to create an exhaustive database for docking and a statistical
forcefield for fast discrimination of true backbone-compatible inter-
actions. RnaX, together with the protein design forcefield FoldX, en-
ables us to predict RNA–protein interfaces and, when sufficient
crystallographic information is available, to reengineer the interface
at the sequence-specificity level by mimicking those conformational
changes that occur on protein and RNA mutagenesis. These results,
obtained at just a fraction of the computational cost of methods that
simulate conformational dynamics, open up perspectives for the en-
gineering of RNA–protein interfaces.
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RNA-binding proteins (RBPs) play a fundamental role in
many cellular processes, including DNA transcription, re-

verse transcription, replication, pre-mRNA splicing, regulation
of intracellular RNA concentration, and mRNA stability and
translation. RBPs not only influence each of these cellular pro-
cesses, but also provide links among them (1–4). The rational
engineering of RNA–protein interfaces (RPIs) has many bio-
technological and medical applications (5, 6). RBPs engineered to
recognize specific RNA sequences (7) could become valuable tools
for manipulating posttranscriptional regulatory networks and de-
veloping therapeutic agents to treat genetic and infectious diseases.
The functional diversity of RBPs suggests a corresponding

diversity of structures responsible for RNA recognition; it is
estimated that the universe of RBPs composes between 6% and
8% of the human proteome (8). However, most of the RBPs that
have been studied so far are composed of a relatively low
number of RNA-binding modules (9). Thus, the large diversity of
RNA targets is managed by the presence of multiple copies of
these RNA-binding domains in different combinations, thereby
expanding the functional repertoire of RBPs. Is important to
note that intrinsically disordered regions play key roles in RNA-
binding proteins, with an estimated ∼30% of proteins marked as
hubs (the top 20% of the interacting proteins of an interactome)
containing disordered motifs (10). The presented method in
combination with FoldX could predict the docking of protein-
disordered regions as long as they have been observed in other
proteins. The main limitation is the conformational diversity of
disordered peptides interacting with RNA. Despite efforts by the
structural community, the structural landscape of RNA-binding
modules is not fully covered in the Protein Data Bank (PDB)

(11); only 275 X-ray Homo sapiens RNA–protein complexes
(RPCs) have been deposited to date.
Over the past decade, different in silico approaches have tried

to address the challenging tasks of achieving RNA-binding site
recognition, RNA docking, and RPI design. Direct readout
methods are based mainly on machine learning algorithms and
include BindN (12), BindN+ (13), PPRInt (14), and PiRaNhA
(15), all of which use support vector machines. On the other
hand, NAPS (16), RNABindR (17), PRBR (18), and catRapid
(19) use decision trees, the naïve Bayes classifier, and random
forest algorithms, respectively, incorporating the physicochemi-
cal properties of amino acids along with predictable features,
such as secondary structure, sequence conservation, and solvent
accessibility. In contrast, indirect readout approaches were ini-
tially adapted from existing protein–protein docking algorithms.
However, these programs often fail to generate native-like
structures due to incomplete sampling of the conformational
space and deficiencies of the scoring functions, which are not
specifically designed for RPIs (20). Nonetheless, docking algo-
rithms, such as HADDOCK (21), RosettaDock server (22),
ClusPro (23), GRAMM-X (24), 3D-Garden (25), HEX server
(26), SwarmDock (27), ZDOCK server (28), PatchDock (29),
ATTRACT (30), pyDockSAXS (31), InterEvDock (32), NPDock
(33), and HDOCK (34), with the exception of NPDock, have been
adapted to accept nucleic acids. Rigid solid approaches face
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problems derived from the intrinsic flexibility of the RNA and the
electrostatic nature of forces driving the RPIs (35). To account for
these properties, some of the methods taken from protein-protein
docking have been updated by adding electrostatic terms to the
energy function (36). Unfortunately, however, RPIs are still difficult
to predict and model with these methods (37).
Previously we showed that by decomposing DNA-protein

complexes into pairs of interacting DNA-protein fragments, we
could successfully predict DNA-protein interacting interfaces, in
addition to the DNA sequence recognized by the protein (38).
The assumption behind this method is that the conformational
landscape of interacting pairs of DNA-protein small fragments is
large but limited, and as such, it should be possible to extract this
landscape from the existing structures (39). In this work, we used
a similar approach to predict RPIs (Fig. 1 and SI Appendix, Fig.
S2B and SI Appendix). Predicting RNA–protein interactions is a
bigger challenge than predicting DNA–protein interactions due
to the higher intrinsic flexibility of RNA, as well as the smaller
number of available RPCs (∼3,000 vs. ∼5,100 for DNA-protein
complexes). Thus, we built a library composed of protein frag-
ments (pepX) and nucleotide fragments (rnaX), plus the spatial
relationships between them (intX). These libraries were then
integrated into the ModelX software tool (http://modelx.crg.es).
Together with the built database of fragments and interactions,
we developed a statistical force field (40, 41) derived from the
observed distances between RNA and protein atoms. The de-
veloped algorithm, called RnaX, was benchmarked against a
published nonredundant dataset of RPCs achieving a maximum
Receiver Operating Characteristic (ROC) curve accuracy of
∼0.86. We also tested the method with a dataset of newly (2018)
deposited RPCs to test its discovery capabilities, achieving a
coverage closer to 80% of binding sites. We also developed an
algorithm to join docked fragments (GlueDocks) into longer strands,
which can be used to remove spurious docks. A comparison of our
docking algorithm performance with some of the previously

mentioned methods is provided in SI Appendix, Table S4. As some
of the methods are web servers, no massive runs can be executed
on them; thus, we just provide the benchmarking values published
in each paper. The methods not included in the table provided
only protein-protein performance values.
Finally, we combined the recently published version of the FoldX

force field (42), which accounts for RNA molecules in its energy
calculations, by performing RNA mutagenesis over the RNA
strands docked by our RnaX docking module of ModelX, showing
how they can be used together to reengineer a sequence-specific
interface. FoldX and ModelX combined enable predictions of RPIs
at sequence-specificity level. Over time, the power of this approach
will increase as the number of deposited RPCs also increases.

Materials and Methods
The main command incorporated into the ModelX tool suite, RnaDocking,
scans an input protein structure with a sliding window of peptide iterations
(with peptide length given by the frag-length parameter), looking for pepX
fragments that overlap well with the protein window being scanned. All of
the pepX fragments stored in the built database interact with an rnaX
fragment, constituting an interacting pair, or intX (Fig. 1). Once a pepX
fragment is selected, the corresponding rnaX fragment is placed to interact
with the input protein. Compatible pepXs are retrieved by selecting those
with geometrically compatible backbones (parameter fit-threshold) and
with a sequence similarity given by the pep-mismatches parameter. The
length of the retrieved rnaXs is given by the dock-length parameter. A
docked rnaX fragment is then evaluated using the developed statistical
force field (SI Appendix) according to an energy-threshold parameter. The
statistical force field thus generated has a biased version that considers the
atomic backbone distance distributions of the specific residues and bases in
contact with the evaluated fragment, as well as an unbiased version that
considers the joint atomic distance distributions without any sequence dis-
crimination (biased parameter). Also, in the atom-type parameter, the atoms
to be considered for the energy calculations can be set to BB (only back-
bone), SC (only side chain), or ALL. The propensity of residues to bind RNA (SI
Appendix, Fig. S2A) showed a similar profile as previously published DNA
propensities, while atomic distances (SI Appendix, Fig. S2B) showed similar

Fig. 1. Database and force field genesis. (A) Good-quality RNA–protein complexes are taken from the PDB. (B) Detection of RPIs from the complexes. (C)
Digestion of RPIs into RNA-peptide fragment pairs with peptide fragments of length = 6 and RNA fragments ranging from 4 to 8 (dock length parameter in
the RNADocking command). (D) Atomic coordinates, peptidic dihedral angles, and distance measurements are stored in RNAXDB, along with the statistical
force field generated from these distances. The docking algorithm scans an input protein in a peptide sliding-window fashion, retrieving compatible frag-
ments stored in RNAXDB. Stored RNA fragments interacting with these compatible fragments are placed in the original structure and then evaluated with the
statistical force field.
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peaks but slightly wider bell distributions. Another command, GlueDocks, can
be used to postprocess the docked fragments by joining them into longer
RNA strands when they are geometrically compatible. Extensions are ac-
cepted according to a min-length parameter, with 2 elongated fragments
considered nonredundant extensions when they have overlapping nucleo-
tides up to a defined rmsd-threshold parameter. Details of the database
organization, algorithms, and new commands of the ModelX toolsuite are
available in SI Appendix, Materials and Methods. A step-by-step explanation
discussing the applicability of each ModelX and FoldX command used during
the modeling process of the cases presented below is provided in the online
SI Running Tutorial.

Results
RnaDocking Benchmarking. We validated the RNA docking accu-
racy of ModelX using 2 different benchmarking sets. The first set
is a nonredundant dataset of 126 RPCs (43) (SI Appendix, Table
S1) comprising the archetypal RNA–protein interaction land-
scape. The second dataset contains 70 X-ray RPCs released in
2018 (SI Appendix, Table S2) and is used to show how our
method handles novel structures as they are released. Validation
experiments were performed using a wide range of combinations
of the parameters, including pep-mismatches parameter (se-
quence mismatches of the superimposed pepX fragments) values
of 1 and 2, a frag-length parameter (length of the protein win-
dow) values of 4 and 6, and a fixed dock-length (length of the
RNA fragment range) of 4 (Materials and Methods). Energy
evaluation inside the RnaDocking command was carried out
using only the protein and RNA backbone atoms and the un-
biased force field (Materials and Methods), because at this point
the aim is to search for RNA docking sites in general, not for a
specific RNA sequence. The presented ROC curves (Fig. 2A)

were generated by labeling each amino acid in the crystallized
protein as follows: true positives are those contacting both
crystallographic RNA and at least 1 docked fragment, true
negatives are those not in contact with crystallographic RNA or with
any RNA docked fragment, false positives are those contacting at
least 1 docked RNA but no crystallographic RNA, and finally false
negatives are those in contact with crystallographic RNA but not
with any docked fragment. The best predictions were observed us-
ing pep-mismatches = 1 and frag-length = 6, with an area under the
curve (AUC) of up to 0.86. AUC decreases when pep-mismatches
increases due to an increase in the number of false positives; in Fig.
3C the AUC for 3 mismatches on the Bahadur data set for dock-
length = 6 falls to 0.52. However, runs allowing higher pep-
mismatches could help the user identify the correct binding in-
terface at the expense of more false positives, as shown in Fig. 2 C
and D and explained below.

Negative Benchmarking. To the best of our knowledge, no nega-
tive benchmarking datasets for proteins that do not bind RNA
have been published to date. This is because no specific criteria
have been established to determine whether a protein can form a
complex with RNA. In a review from 2018 (44) that took into
account 7 different methods (interactome capture, mRBPome,
RBDmap, serial RNA interactome capture, photo-cross-linking
and high-resolution mass spectrometry, protein microarrays, and
proteomic identification of RNA-binding regions) to experi-
mentally determine RPIs in more than 1,400 Homo sapiens genes,
not a single gene was tagged as unable to interact with RNA in any
of the 7 methods. We assumed that true RNA-binding proteins
would score positive in the majority of the methods used, while

Fig. 2. RNA docking validation. (A) ROC curves testing the RMSD accuracy of the docks against crystallographic RNA, allowing 1 and 2 pep-mismatches in the
scanned sequence to retrieve compatible fragments using frag-lengths of 4 and 6. (B) Proportion of proteins with recovered interfaces by ModelX docking vs.
the number of experimental methods reporting RNA binding for a dataset compiled in 2018. More experiments reporting binding correlates with a greater
probability of obtaining docks. (C and D) Coverage of RNA-binding sites vs. the false-positive rate for different pep-mismatches parameter values over the
Bahadur published benchmarking dataset (C) and the RPCs published in 2018 (D).
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spurious binders would appear in only a few of the methods. If this
is so, then proteins to which we docked RNA fragments would be
identified as true in the majority of the methods.
To see if this is indeed the case, we selected crystal structures with

the highest resolution that cover most of the 1,400 target proteins.
We then determined the number of structures with docked frag-
ments versus the number of experimental methods included in the
review reporting binding (Fig. 2B). We found that the number of
experiments reporting RNA binding correlates with what was
expected in terms of docked fragments. Of those genes with 6
methods indicating no RNA binding and with a crystal structure
deposited in the PDB (212 entries), we predicted RNA docking for
only 4 of them (PDB ID codes 1JID, 4KRE, 4QOZ, and 5CCB), all
of which have been cocrystallized with RNA. This highlights the
importance of constructing a negative data set to aid benchmarking.
The protein families included in the mentioned review (850 in total)
are summarized in SI Appendix, Table S3. Domains known to bind
RNA molecules are enriched within this dataset. We show that we
could find docking RNA sites for domains sparsely populated in our
database, and even for those for which there is evidence that they
bind RNA but no protein-RNA complex is available. This is be-
cause we are looking at small peptide and RNA fragments, and it is
quite likely that similar structural peptide-RNA arrangements are
found in different domains with different architecture, just like
there are finite ways in which 2 α-helices will interact in a protein.

Fragment Extension and Interface Completion. Another difficulty in
terms of benchmarking RNA docking methods is the fact that
many crystals have only a portion of the RPI determined. Fig. 3
shows our docking results for PDB ID codes 1M8W (Fig. 3A)
and 1ZBH (Fig. 3B), 2 of the proteins belonging to the validation
set. Using these examples, we show how crystallization gaps or
incomplete interfaces can be resolved using ModelX. The distant
regions of the crystallized RNA fragments were covered and
connected with docks that were merged with the GlueDocks
command (Materials and Methods). This step allowed us to dis-
card spurious docks. In the case of 1ZBH, gaps were filled with
rnaXs coming from 4QOZ and 4L8R (45), crystals of the same
protein but with their full RPI determined. In the case of 1M8W,
the docked RNA fragments come from other proteins, and the
interface appears to be correctly covered, extending the actual
knowledge provided by the proteins alone.
It is important to note that for validation purposes, some of

the fragments that were originally docked over 1ZBH were
tagged as false positives, even though in reality they are not. This

is demonstrated by examining the other 2 structures of the same
protein, which indicates that our accuracy measurements pre-
sented above are in fact a lower bound of the method’s actual
performance. Fig. 3C shows that when docked RNA fragments
are annealed with the GlueDocks command, the rate of docked
false-positive RNA strands decreases, increasing the AUC of
exhaustive runs (pep-mismatches = 3) from 0.52 to 0.79. On the
other hand, increasing the number of mismatches allowed us to
cover up to 85% of the crystallographic RNA with docks.

Interface Engineering. Beyond binding site recognition and RPI
landscape completion, ModelX can also be used for RPI engi-
neering. As an example, we chose the small spliceosomal protein
family (Pfam accession no. PF00076) (46), for which the number
of crystallographic structures allows an exhaustive investigation of
the energetics of the mutational landscape. We explicitly excluded 1
protein belonging to this family—the U1A small nuclear ribonu-
cleoprotein (UniProt P09012, PDB 1URN, and all other crystals of
this protein)—from the built database and attempted to model it.
Modeling was started from a different protein of the same family
that presents low backbone variability (Fig. 4A), the U2A′ small
nuclear ribonucleoprotein (UniProt P09661, PDB 1A9N, and oth-
ers). Using the FoldX BuildModel command, we introduced the
U1A sequence into the U2A′ backbone (U1A model). Then, by
running an exhaustive (pep-mismatches = 3, energy-threshold = 2)
RnaDocking over the U1A model with parameters to make it RNA
protein sequence-specific (biased = true, atom type = ALL), we
covered the binding site with compatible crystallographic RNA
fragments. We merged these posteriorly with the GlueDocks
command to generate longer strands and remove false-positive
spurious docks (min-length = 7) (Fig. 4C). Then, using the FoldX
force field, we determined the RNA sequence specificity of the
elongated RNA docked fragments on the U1A model, as well as on
the original RNA structure of the U2A′ complex. We found that we
could retrieve the original U1A RNA sequence preferences only
when using the best docked elongated fragment and not when using
the original RNA strand of the crystal U2A′ (Fig. 4D). This because
the docked fragments capture the conformational differences of the
backbone between the RNA molecules bound to the U1A structure
and those bound to the U2A′ structure (Fig. 4 B and C).

Discussion
Here we present a computational approach, termed RnaX, that
predicts RPIs and is integrated into the ModelX software suite.
This method uses a sliding window over the protein structure in

Fig. 3. Solving crystallographic RNA gaps with ModelX. (A) PDB ID code 1ZBH (a histone mRNA stem-loop) and (B) PDB entry 1M8W (a homolog of the Pumilio 1
human domain). Crystallographic RNA is in red; RnaDocking fragments obtained after an exhaustive run (pep-mismatches = 3) are in cyan. Decoy docked fragments
could be filtered out by elongating geometrically compatible strands with the GlueDocks new command. (C) ROC curve for the Bahadur benchmarking dataset using
pep-mismatches = 3 before (green) and after (red) running the GlueDocks command, with the min-length parameter to obtain elongated strands set to 8.
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which we looked for peptide fragments in our peptide-RNA library
that superimpose well with the protein peptide in the corresponding
window. The peptides in the library are associated to RNA frag-
ments that are positioned automatically at the same time that the
peptide is superimposed. Then those RNA fragments that are
compatible with the rest of the protein backbone are retained for
further analysis. Our validation experiments show that our method
has high accuracy over an established benchmarking dataset and
over newly deposited RNA–protein structures. By docking frag-
ments originally coupled to highly similar sequences (pep-mis-
matches = 1), RnaX is able to detect RNA-binding sites with high
confidence at the cost of reduced coverage. In contrast, when
allowing the method to retrieve docks originally interfacing pro-
tein fragments with low sequence identity to the protein part being
scanned (pep-mismatches = 3), we obtained close to 85% struc-
tural coverage at the cost of many false positives.
The false-positive problem can be partly solved by elongation

of the docked RNA fragments. Since this method is based on
existing RNA–protein structures, its main limitations are related
to coverage of the possible RNA–protein interaction landscape
in the PDB database. This implies that RNA-peptide interface
configurations not yet observed in deposited crystals cannot be
identified by our docking method. Given that the number of
protein-RNA structures grows at a linear rate (SI Appendix, Fig.
S1), we have engineered our software to easily digest new RNA–

protein interfaces, increasing the database and thus the prediction

capability. ModelX flexibility modeling generated by backbone-
compatible docked fragments can be combined with the fine
side chain energetics of FoldX′s force field to predict RNA se-
quence specificity of docked fragments. This is possible because of
the conformational flexibility generated by docking RNA fragments,
as shown for 2 closely related RNA-binding proteins. Furthermore,
ModelX and FoldX can accomplish this at just a fraction of the
computational cost of other flexibility simulation methods, such as
molecular dynamics.

Data Availability. All structures deposited in the PDB used and
analyzed in this paper are mentioned in the SI Appendix.
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Fig. 4. Sequence-specific interface reconstruction with ModelX and FoldX. (A) Superimposition of the backbones of 2 small spliceosomal ribonucleoproteins
(PDB ID codes 1URN for the U1A protein and 1A9N for U2A′ protein, in gray and cyan, respectively) enables accurate side chain modeling because of the low
RMSD between their protein molecules. (B) The U1A sequence was modeled into the U2A′ structure. The U2A′ protein surface is in gray; the 2 snRNA
fragments cocrystallized with each protein are in red and pink. The RNA backbones interfacing with the protein have major structural differences starting at
position 12. (C) The U1A model was subjected to RNA docking, taking into account the sequence-specific–based force field (biased). The docked fragments
were elongated by the GlueDocks command (in cyan) and show good superimposition with the crystallographic RNA being modeled (U1A snRNA, in red). (D)
FoldX ΔΔG RNA Position-Specific Scoring Matrices. On the left are interaction energy values for the U1A crystal as a validation; in the center are the in-
teraction energy values for the elongated docked RNA fragment with the lowest energy, along with the U1A protein model; and on the right are values for
the crystallographic U2A′ snRNA strand alongside the U1A protein model. The bases in contact with protein residues are shown within the dashed box. While
we recovered the RNA sequence specificity using the docked and elongated fragments, the original U2A′ snRNA strand was not useful for reproducing the
U1A specificities due to conformational differences of the RNA backbones, specifically at positions 12 to 16.
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